Improved Particle Swarm Optimization Algorithm Based on Dynamic Change Speed Attenuation Factor and Inertia Weight Factor
نویسندگان
چکیده
منابع مشابه
Particle Swarm Optimization with Inertia Weight and Constriction Factor
In the original Particle Swarm Optimization (PSO) formulation, convergence of a particle towards its attractors is not guaranteed. A velocity constraint is successful in controlling the explosion, but not in improving the fine-grain search. Clerc and Kennedy studied this system, and proposed constriction methodologies to ensure convergence and to fine tune the search. Thus, they developed diffe...
متن کاملParticle Swarm Optimization with Smart Inertia Factor for Combined Heat and Power Economic Dispatch
In this paper particle swarm optimization with smart inertia factor (PSO-SIF) algorithm is proposed to solve combined heat and power economic dispatch (CHPED) problem. The CHPED problem is one of the most important problems in power systems and is a challenging non-convex and non-linear optimization problem. The aim of solving CHPED problem is to determine optimal heat and power of generating u...
متن کاملDynamic Inertia Weight Particle Swarm Optimization for Solving Nonogram Puzzles
Particle swarm optimization (PSO) has shown to be a robust and efficient optimization algorithm therefore PSO has received increased attention in many research fields. This paper demonstrates the feasibility of applying the Dynamic Inertia Weight Particle Swarm Optimization to solve a Non-Polynomial (NP) Complete puzzle. This paper presents a new approach to solve the Nonograms Puzzle using Dyn...
متن کاملChaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks
Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...
متن کاملA Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm
Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1732/1/012072